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Modern AI- and Data-intensive software systems rely heavily on data science and machine learning libraries
that provide essential algorithmic implementations and computational frameworks. These libraries expose
complex APIs whose correct usage has to follow constraints among multiple interdependent parameters.
Developers using these APIs are expected to learn about the constraints through the provided documentation
and any discrepancy may lead to unexpected behaviors. However, maintaining correct and consistent multi-
parameter constraints in API documentation remains a significant challenge for API compatibility and
reliability. To address this challenge, we propose MPChecker for detecting inconsistencies between code and
documentation, specifically focusing on multi-parameter constraints. MPChecker identifies these constraints
at the code level by exploring execution paths through symbolic execution and further extracts corresponding
constraints from documentation using large languagemodels (LLMs).We propose a customized fuzzy constraint
logic to reconcile the unpredictability of LLM outputs and detect logical inconsistencies between the code
and documentation constraints. We collected and constructed two datasets from four popular data science
libraries and evaluated MPChecker on them. The results demonstrate that MPChecker can effectively detect
inconsistency issues with the precision of 92.8%. We further reported 14 detected inconsistency issues to the
library developers, who have confirmed 11 issues at the time of writing.
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1 Introduction
Machine learning (ML) and Artificial Intelligence (AI) have consistently garnered widespread
attention, achieving remarkable breakthroughs in diverse domains including natural language
processing, recommendation systems, autonomous vehicles, and robotics. Behind the rapid ad-
vancement of these transformative technologies, data science and machine learning libraries play a
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crucial role in AI and ML development. By providing extensive APIs for complex mathematical
operations and algorithmic implementations, these libraries enable researchers and practitioners to
focus on solving domain-specific problems rather than reimplementing fundamental algorithms.
A well-designed API documentation not only provides detailed descriptions of interfaces, in-

cluding the purpose and range of parameters or attributes, returns, and exceptions thrown, but
may also specify logical constraints or dependencies among multiple parameters. For data science
and machine learning libraries, multi-parameter constraints are commonly mentioned in their
API documentation and users of these libraries are expected to follow them closely when using
the APIs. However, frequent version updates may lead to the documentation out of sync with
the corresponding code, known as the Code-Documentation Inconsistency (CDI) issue [14, 51].
Such CDI issues are particularly pronounced in data science libraries. On one hand, the underlying
mathematical models of DS/ML libraries inherently come with various constraints, such as “a model
X can only be chosen when a parameter Y is provided”, and incorrect parameter configurations not
satisfying their constraints may lead to unexpected outcomes. On the other hand, the number
of parameters/attributes of these libraries can be significantly more than a typical library API,
sometimes over a few dozen. Therefore, it is unrealistic to track all parameter constraints manually.

Detecting errors in multi-parameter constraints from Python API documentation is challenging
for several reasons. (1) The quality of API documentation varies and lacks standardized writing
guidelines. Some API documentation uses ambiguous language, contains typos, and may not follow
a consistent styling guide. This makes simple rule-based pattern-matching approaches ineffective.
(2) Existing approaches [37, 53] for detecting documentation errors focus on a single parameter
only: e.g., checking whether the information provided on parameter ranges, nullness, and identifier
names is correct. It is more challenging to extract multi-parameter constraints precisely from
free-style descriptions written in natural languages. (3) For the same reason, a semantic-aware
code analysis approach is essential, as logical relations among multiple parameters cannot be easily
identified through purely syntactic analysis. The challenge is further compounded by Python’s
dynamic nature, where variable types, attributes, and behaviors can change at runtime.
To detect multi-parameter constraint inconsistencies from data science library documentation,

we propose an automated tool MPChecker. MPChecker identifies inconsistencies between API
documentation and the corresponding library code by combining symbolic execution-based pro-
gram analysis techniques with constraint extraction methods powered by large language models
(LLMs). We first extract multi-parameter constraints from documentation (a.k.a. doc-constraints),
leveraging the powerful natural language understanding capability of LLMs. We incorporate a few
optimizations, such as Chain of Thought (CoT) [68] and few-shot learning to improve the accuracy
of constraint extraction. Then we use dynamic symbolic execution to collect all path constraints
from the corresponding Python source code. The symbolic path constraints (a.k.a. code-constraints)
capture the real constraints that the parameters have to follow according to the library code, which
are then used to evaluate the correctness of the doc-constraints.

Then, in order to mitigate minor discrepancies that may arise from the doc-constraints extracted
by LLMs, we design and implement a Fuzzy Constraint Logic (FCL) framework to estimate how
logically consistent a doc-constraint is with a set of given code-constraints. Intuitively, in the absence
of LLM-induced unpredictability, a doc-constraint must be evaluated as true under the assumption
of code-constraints. Through fuzzy constraint satisfaction, we can accommodate many nearly-correct
constraints produced by LLMs and thus improve the accuracy of the overall approach.

Contributions. Our work aims to integrate precise symbolic reasoning with the inherently fuzzy
outputs of large language models. To summarize, we make the following contributions.
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(1) We proposed an automated multi-parameter code-documentation inconsistency detection
technique and developed an end-to-end command-line tool called MPChecker. Existing
techniques in the same area are only designed to handle single parameter inconsistencies,
without considering inter-parameter constraints.

(2) We introduced a customized fuzzy constraint satisfaction framework to mitigate the uncer-
tainties introduced by LLM outputs. We provide a theoretical derivation of the membership
function based on constraint similarity.

(3) We constructed a documentation constraint dataset comprising 72 real-world constraints
sourced from widely used data science libraries, and derived a mutation-based inconsistency
dataset with 216 constraints. Our dataset and tool implementation are made available online:
https://github.com/ParsifalXu/MPChecker

(4) We evaluated our tool on four real-world popular data science libraries. We reported 14
inconsistency issues discovered by MPChecker to the developers, who have confirmed 11
inconsistencies at the time of writing.

2 Background
In this section, we review the essential terminology and background necessary for understanding
the remainder of the paper.

2.1 Multi-Parameter Constraints
We use two examples to illustrate inconsistencies between API documentation and the correspond-
ing code caused by multi-parameter interdependence. Both of them come from open-source Python
data science libraries and were successfully detected by MPChecker. In general, there are two
types of constraints found in the API documentation. (1) An explicit constraint clearly specifies the
logical relationship among two or more interrelated parameters. (2) An implicit constraint is an
unstated or indirectly implied relationship among two or more interrelated parameters, where the
constraint is inferred through contexts or convention rather than explicitly specified.

2.1.1 Example 1: Explicit Constraint. The first example comes from statsmodels [63], which
provides a complement to scipy for statistical computations including descriptive statistics and
estimation and inference for statistical models. Statsmodels has more than 10K stars on GitHub
and is actively maintained. Figure 1 illustrates an inconsistency caused by an explicit constraint
from the class AutoReg. The relevant portions for the doc- and code-constraints are highlighted. As
mentioned in the documentation of deterministic, the trigger condition for the warning is that
“trend is not n, and seasonal is not False”. However, it is apparent that the code-constraint for trend
and seasonal (to be used together correctly and avoid any warning) implemented is or instead of
and. One way to fix the documentation is to change “and” to “or”.

2.1.2 Example 2: Implicit Constraint. The second example comes from scikit-learn [59], which
is a widely-used (more than 60K stars on GitHub) open-source ML library in Python, designed to
offer simple and efficient tools for data mining and data analysis. Figure 2 displays an inconsistency
caused by an implicit constraint from the class SpectralClustering. It is evident that the highlighted
part of the documentation only explicitly mentions one parameter affinity, omitting the subject
“gamma”. More importantly, “ignore” is not a specific identifier or value but rather a description of
the program logic—if the parameter affinity is set to nearest_neighbors, then the parameter gamma
will not be used. Whereas, above constraint does not faithfully reflect the behavior implemented in
code. According to the code snippet, “gamma” is not only ignored within the nearest_neighbors
branch, but also ignored within the precomputed_nearest_neighbors and precomputed branches.
This indicates that the constraint is inaccurate and demonstrates a form of inconsistency.
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Constraint description of trend and seasonal in class AutoReg

> deterministic: DeterministicProcess

A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if

trend is not "n" and seasonal is not False.

Corresponding code snippet in class AutoReg

1 class AutoReg(tsa_model.TimeSeriesModel):

2 def __init__(...):

3 if deterministic is not None and (self.trend != "n" or self.seasonal):

4 warnings.warn('When using deterministic, trend must be "n"

5 and seasonal must be False.', SpecificationWarning, stacklevel=2)

Fig. 1. Examples of an explicit constraint from Statsmodels.

For this type of implicit constraint, traditional pattern-based approaches are not able to extract
the doc-constraint correctly, thus fail to detect the inconsistencies. To solve this issue, we design a
customized constraint that incorporates fuzzy words, and adopt few-shot learning to teach LLMs
how to generate such constraints (details in Section 3.2.2). In this case, the doc-constraint should be
“(affinity = "nearest_neighbors")→ (ignore(gamma))”, where a special predicate “ignore(x)” is used
to indicate that a parameter x is ignored (see Section 3.3.1).

2.2 Fuzzy Logic and Fuzzy Constraint Satisfaction
Unlike traditional Boolean logic, fuzzy logic [31] is a multi-valued logic that allows for values
between 0 and 1 to represent varying degrees of truth, where 0 represents absolute false, and 1
represents absolute true. The human brain can process vague statements or claims that involve
uncertainties or subjective judgments, such as “the weather is hot”, “that man runs so fast”, or “she
is beautiful”. Unlike computers, humans possess common sense, allowing them to reason effectively
in situations where things are only partially true. Fuzzy logic is primarily used to model uncertainty
and vagueness, making it highly applicable in real-world scenarios where precision may be difficult
or impossible to achieve.

A traditional constraint satisfaction problem (CSP) [18] requires all constraints to be fully satisfied.
Constraints are either completely satisfied or unsatisfied, which is why these strict, non-fuzzy
constraints are referred to as “crisp constraints”. An extension of CSP, known as soft CSP [39, 58],
introduces a distinction between hard constraints and soft constraints. Hard constraints must be
absolutely satisfied, while soft constraints are typically assigned a weight or priority, allowing
for lower-weighted constraints to be only partially satisfied or even unsatisfied under certain
conditions during problem-solving. Another extension is Fuzzy CSP [56], which differs from soft
constraints in that it incorporates fuzzy logic and allows each constraint to be “partially satisfied”
to a degree, quantified by a “satisfaction degree”. This satisfaction degree usually ranges from 0 to
1, indicating the extent to which a constraint is fulfilled. The goal in fuzzy constraint satisfaction is
to find a solution that maximizes satisfaction, rather than strictly satisfying all constraints.

3 Methodology
In this section, we define the issue of code-documentation inconsistency caused by multi-parameter
constraints and provide a detailed description of our approach. An API documentation error is
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Constraint description of gamma and affinity in class SpectralClustering

> gamma : float, default=10

Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels. Ignored for
affinity="nearest_neighbors".

Corresponding code snippet in class SpectralClustering

1 class SpectralClustering(ClusterMixin, BaseEstimator):

2 def fit(self, X, y=None):

3 if self.affinity == "nearest_neighbors":

4 ...

5 elif self.affinity == "precomputed_nearest_neighbors":

6 ...

7 elif self.affinity == "precomputed":

8 ...

9 else:

10 params = self.kernel_params

11 if params is None:

12 params = {}

13 if not callable(self.affinity):

14 params["gamma"] = self.gamma

15 params["degree"] = self.degree

16 params["coef0"] = self.coef0

Fig. 2. Examples of implicit constraint from Scikit-learn.

an inconsistency between the library source code and its API documentation. Multi-parameter
constraints refer to conditional dependency relationships that exist among multiple parameters
within functions or classes. If a constraint is never violated across all execution paths in the code,
it is considered as a benign constraint, or it indicates a potential documentation error. According
to literature [65, 79, 80], API documentation inconsistency can be categorized into two types:
incorrectness and incompleteness. Incorrectness refers to cases where the documentation describes
behavior that is not implemented in the code, while incompleteness arises when certain code
behaviors are not reflected in the documentation. Typically, incorrectness issues are considered
more critical than incompleteness.
In addition, when it comes to constraint extraction, compared to single-parameter constraints,

we need to classify the multi-parameter constraint extraction problem into two types, as discussed
in Section 2.1, 1) explicit constraint and 2) implicit constraint.
MPChecker aims to accurately extract multi-parameter constraints from API documentation

and detect both types of inconsistency. As the architecture depicted in Figure 3, we have designed
a three-phase workflow comprising the 1) Data Preprocessing; 2) Constraint Extraction; 3) In-

consistency Detection. During the preprocessing phase, we separate the code and documentation
within the project. MPChecker will then automatically rewrite each function to be compatible
with the symbolic execution tool. This includes replacing advanced Python syntax that the tool
cannot handle with simpler constructs and symbolizing external function calls, such as replacing
ternary conditional expressions with if-else statements. These modifications do not alter the path
constraints of the original program. In the constraint extraction and expression generation phase,
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Fig. 3. The architectural overview of MPChecker.

on the one hand, we leverage large language models to extract constraints in a specific format from
the documentation. On the other hand, the symbolic execution tool dynamically analyzes the code
and solves the constraint paths. Those constraints are then converted into expressions that can
be processed by the SMT solver. In the fuzzy constraint checking phase (Phase III), a constraint
checker with SMT solver and fuzzy constraint reasoner performs comprehensive reasoning to detect
inconsistencies. It is worth noting that we propose and implement an extended fuzzy constraint
satisfaction to mitigate the hallucination issues often introduced by large language models, and
reduce the risk of false positives and missed detections.

3.1 Preprocessing
In this step, we will discuss the details of separating the documentation and corresponding code
from the project and the specifics of preprocessing the documentation content.

In modern data science libraries, documentation is typically auto-generated using Sphinx, a tool
that can automatically create HTML documentation from Python code. Sphinx supports various
docstring styles, with Google style and NumPy style being commonly used. Figures 4 respectively
display docstring examples of two different styles from Sphinx official website [61, 62]. Google-style
docstrings use a clear and concise format with a minimalistic structure. It divides the docstring
into sections like Args, Attributes, etc., with each section using plain indentation. Similarly,
Numpy-style docstrings organize sections more rigidly. Sections are divided by using Parameters,
Attributes, etc. with horizontal dash lines “- - -” under the section header. The number of dashes is
the same as the number of letters in the section header. Regardless of the style used, the docstring
is normally placed at the beginning inside its corresponding class or function.
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Numpy Style Docstrings

1 class ExampleNumpyStyle():

2 """Exceptions are documented

3 Parameters

4 ----------

5 msg : str

6 Human readable string describing the

exception.

7 code : obj:`int`, optional

8 Numeric error code.

9 Attributes

10 ----------

11 msg : str

12 Human readable string describing the

exception.

13 code : int

14 Numeric error code.

15 """

16 def __init__(self, msg, code):

17 self.msg = msg

18 self.code = code

Google Style Docstrings

1 class ExampleGoogleStyle():

2 """Exceptions are documented

3 Note:

4 Do not include the `self` parameter

5 in the ``Args`` section.

6

7 Args:

8 msg (str): Human readable string

describing the exception.

9 code (:obj:`int`, optional): Error

code.

10

11 Attributes:

12 msg (str): Human readable string

describing the exception.

13 code (int): Exception error code

14 """

15 def __init__(self, msg, code):

16 self.msg = msg

17 self.code = code

Fig. 4. Example of two docstring styles

After downloading the project, our tool first converts every Python file from the project into an
Abstract Syntax Tree (AST) and isolates the classes and independent functions. This paper focuses
on the CDI issue, so in this step, we filter out code without documentation and separately extract
the code and documentation from the remaining code. Since Python supports object-oriented
programming but current symbolic execution tools have limited support for classes, we have to
limit our experimental units to functions. For independent functions, the scope of constraints in
the documentation usually applies within the function itself. For classes, however, the constraints
cover the entire class, including each member function. Therefore, we create a new directory
for every class and independent function, with member function directories placed within their
corresponding class directories to maintain structural consistency. If the member function has its
own documentation, it will also be retained.

To help the LLM better focus on the constraints between parameters and reduce the occurrence
of erroneous constraints, we retained parameters or attributes and their corresponding descriptions
in the form of key-value pairs, based on the two aforementioned docstring styles. We subsequently
applied a rule-based heuristic approach to retain documentation that potentially contain constraints
and to discard the rest. For instance, if none of the parameters or attributes appear in other
descriptions, this indicates the absence of multi-parameter constraints in that documentation.

3.2 Constraint Extraction
We now specially explain how to extract path constraints from code and convert them into expres-
sions which are solvable by SMT solver, as well as how to use LLM to extract constraints from
documentation and transform them into expressions containing fuzzy words.
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3.2.1 Code Constraint Expression Extraction. The goal of MPChecker is to verify whether the
constraints between multiple parameters in documentation align with the logic during actual
code execution. This requires our tool to understand and analyze deeper constraint relationships.
Therefore, we employ symbolic execution to capture as many path conditions as possible and
precisely handle complex paths and constraints.

We modified current advanced dynamic symbolic execution tools [16, 19, 48–50] for path explo-
ration. Unfortunately, supporting dynamic languages like Python is more challenging compared to
symbolic execution tools designed for static languages such as Java and C. Despite Python’s rapid
evolution, symbolic execution tools specifically designed for Python have developed slowly, strug-
gling to keep pace with the growing new syntax and features. This forces us to make reasonable
modifications to the source code extracted directly from repositories. However, these modifica-
tions must not alter the path constraints of the original code; they should be equivalent code
transformations that do not affect path exploration. We mainly made the following modifications:

(1) Current Python symbol execution tool can not solve class directly. Therefore, it is necessary
to split the class into functions (i.e. member functions). The corresponding member variables
also need to be changed and used as symbolic inputs.

(2) Replace complex structures and operations, such as lists and dictionaries, that are difficult
to handle and do not affect the path, as well as external function calls that may cause path
explosion, with symbolic inputs.

(3) Replace the handling of exceptions and warnings that do not affect the path with return.
(4) Add a fixed format of return statement to capture concrete values of potential symbols.
(5) Equivalent code implementation replacement to avoid being unable to find useful path

constraints due to poor support for some advanced syntax. For example, replace ternary
operator to conventional if-else statement.

In the limit, MPChecker strives to explore all feasible paths in a Python function by following
these processes: 1) Running the function with specific input to trace a path through the control
flow of the function; 2) Symbolic executing the path to determine how its conditions depend on
the function’s input parameters; 3) Utilizing Z3 to generate new parameter values that guide the
function toward paths that haven’t been covered yet.
Although MPChecker supports a certain level of external function call analysis, in complex

real-world code, an external function call often corresponds to extra more function calls, leading
to path explosion. Furthermore, documentation constraints are usually handled within the target
function, so we still prefer not to introduce external function calls and to focus the analysis within
the target function. Additionally, similar to the current concolic symbolic execution tools for Python,
MPChecker does not yet provide strong support for theorem of strings. Thus, during the actual
execution process, we replace the string with a unique large number, which does not affect the
exploration of condition constraints.

We will use an example depicted in Figure 5 to illustrate the entire extraction phase, containing a
simplified original source code andmodified code from a popular data science project scikit-learn,
and its corresponding path constraints. The fit function is a member function within a class, and
thus member variables such as “self.strategy” also exist within the code. We also modified “None”
as a string to make it easier to be captured, since it is represented as a number 0 during symbolic
execution. Our tool first modifies the code and replaces exception handling and external function
calls with symbolic inputs, marked as “ERROR_END” and “call_”, respectively. For those paths
whose final states are “ERROR_END”, the final results of the conjunction of the documentation
constraint and these paths will be negated during reasoning phase.
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Original source code

1 def fit(self, sample_weight):

2 if sample_weight is not None and self.

strategy == "uniform":

3 raise ValueError("Warning Info")

4 if sample_weight is not None:

5 sample_weight = _check_sample_weight(

sample_weight, X)

Modified source code

1 def fit(sample_weight, strategy, call__check_sample_weight):

2 if sample_weight != 'None' and strategy == 'uniform':

3 return '(sample_weight)_(strategy)_ERROR_END'

4 if sample_weight != 'None':

5 sample_weight = call__check_sample_weight

6 return (f'(sample_weight = {sample_weight}) ^ (call__check_sample_weight =

{call__check_sample_weight}) ^ (strategy = {strategy})')

Fig. 5. Extracting constraint from code

3.2.2 Documentation Constraint Expression Extraction. In this step, we extract constraints from
Python documentation by applying LLMs. Since Python documentation can vary in quality and
may contain informal writing [52], the important task is to understand the parameter information
within the documentation. To achieve this, we resort to SOTA LLMs. Given Python documentation
as input, the LLM is asked to first extract constraint-related sentences and then output them in a
standard logical expression format. This includes two steps, model selection and prompt design.

Model Selection. We adopt GPT-4, which is pretrained on a diverse corpus and shows excellent
performance in natural language understanding. Based on our preliminary study, GPT-4’s per-
formance stands out compared to Gemini-1.5 [22] and LLaMA-3 [40] due to its ability to capture
details, and it is also well-acquainted with the context of code documentation [21].

Prompt Design. Because the constraint extraction task is relatively complex and can be broken
down into clear steps, we apply the chain-of-thought approach [67], which has been widely proven
effective in improving GPT-based model performance. We first divide the prompt task into two
steps, document input and constraint extraction. Figure 6 shows the structure and some details of
the used prompt. Below, we detail our prompt mechanism for each step.

Document Input Prompt. We observe that some documentation may be too lengthy to provide
to GPT-4 in a single input, considering that GPT-4 has a maximum token length limit of 8,192
tokens [45]. We also find that LLMs exhibit lower performance when dealing with long and complex
text inputs as noted in previous research [24, 27]. Thus, we decide to segment the lengthy documents
into smaller sections. To determine a heuristic chunk size, we randomly select ten lengthy Python
documentation files, split them into chunks of varying word lengths, and use these as inputs for
GPT-4. We then evaluate the constraint extraction task performance of GPT-4 based on these inputs
to determine which chunk size yields better results. Based on our findings, we decide to standardize
the chunk size to 1,500 words (around 2,048 tokens [46]). We also input the parameter list obtained
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in Section 3.1 into GPT-4 to help model better recognize the information related to parameters. The
details of the document input prompt are shown in Prompt 1 in Figure 6.

Constraint Extraction Prompt. For the constraint extraction task, our prompt is divided into three
parts to guide GPT-4 in recognizing text related to constraints in the original documentation, and
then, based on that text, to generate a formatted logical expression of the constraint.
The first part involves defining the logical symbols that can be used in the logical format,

including implication, negation NOT, logical AND, logical OR, and also defining parentheses to
indicate the precedence of logical expressions.
The second part arises from our preliminary study, in which we observed that some Python

documentation uses vague terms such as “override”, “specify”, “have an effect”, “no effect”, “signifi-
cant”, and “ignore” when mentioning constraints related to parameters. To preserve as much detail
as possible from the documentation, we design prompts to guide GPT-4 so that if text related to
parameter constraints contains vague keywords, these keywords should be retained in the final
logical expression.

In the third part, to ensure that the format of the logical expression in GPT-4’s output is consistent
each time and convenient to process, we apply in-context learning techniques that widely used
in previous works [41, 55] to enable GPT-based models to handle tasks specific to a domain. We
include four examples that contain pairs of original constraint-related sentences selected from
Python documentation and their corresponding logical expression constraints.

Act as a code developer who is reading the code documentation. 

Please remember this
parameter list mentioned in this documentation: {parameter list}. 

{documentation}  Document split prompt +
{documentation segment}

Document Input Prompt

Your final task is to convert textual constraints from documentation into
a specified logic format. Please think it step to step.

1.  Logic Symbols: Use -> to denote implication (if...then); Use ! for 
negation (NOT); Use ˆ for logical AND; Use || for logical OR; Enclose 
expressions in parentheses () to clarify the order of operations.

2. Keyword Placeholder Usage: If a constraint contains any of the 
following keywords: "override", "specify", "have an effect", "no effect", 
"significant", "ignore", use these keywords as placeholders within your 
logic expression.

3. Solution Format: Present your solutions as follows:

Constraint Number: ...
Text Constraint: ...
Logical Format: ...

Constraint Extraction Prompt

Few-shot In-context Learning

Logical Format: (!(distance_threshold = 'None')) -> (n_clusters = 'None').

1. Text Constraint: "n_clusters must be None if distance_threshold is not None."

Logical Format: ((kernel = 'rbf' || kernel = 'poly') || kernel = 'sigmoid') -> significant (gamma).

2. Text Constraint: "gamma is only significant for 'rbf', 'poly', and 'sigmoid' kernels."

Logical Format: (assign_labels = 'kmeans') -> !(n_init = 'None').

3. Text Constraint: "n_init: int, default=10.The final results will be the best output of n_init
consecutive runs in terms of inertia. Only used if assign_labels='kmeans'."

Logical Format: (affinity = 'nearest_neighbors') -> ignore(gamma).

4. Text Constraint: "gamma: float, default=1.0 Kernel coefficient for rbf, poly, sigmoid,

short doc long doc

Please extract all parameter information with their
types and default values from the following documents: 

Instructions:

 {documentation}

Fig. 6. Prompt structure for constraints extraction

3.3 Inconsistency Detection
In the second phase, we extracted constraints from both documentation and code. While code-
constraints are deterministic in nature, doc-constraints inherently contain uncertainties stemming
from two main sources. First, there are implicit constraints arising from vague or incomplete
descriptions, which we address by defining fuzzy words to extend them into soft constraints.
Second, we encounter uncertainties introduced by generative models’ limited reasoning capabilities
and unavoidable hallucination issues, for which no validator exists to definitively determine the
correctness of generated constraints. To address this challenging scenario, we proposed a customized
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fuzzy constraint logic to mitigate such vagueness. With the help of fuzzy words and fuzzy constraint
logic, our converter can effectively handle both explicit and implicit constraints. The converter
ultimately produces fuzzy expressions, which are then processed by a reasoner based on the z3
SMT (Satisfiability Modulo Theories) solver to detect inconsistencies.
The reasoner offers two strategies, from relaxed to strict, to identify inconsistencies from the

perspectives of satisfiability and equivalence. Given a doc-constraint 𝑐 and a code-constraint set 𝑃
containing a group of path constraints 𝑝 , the detection strategies are defined as follows:

• Unsatisfiability checking determines whether the doc-constraint 𝑐 is unsatisfiable under
all path constraints. If the conjunction of 𝑐 and every path constraint 𝑝 is unsatisfiable, it
indicates a contradictory inconsistency, meaning that under all possible execution paths, the
code violates the constraint stipulated in the documentation.

∀𝑝 ∈ 𝑃,¬(𝑐 ∧ 𝑝) (1)

• Nonequivalence checking determines whether the doc-constraint 𝑐 and code-constraints
are logically equivalent. If equivalence holds only under specific conditions, a behavioral
inconsistency may arise, implying that the constraints implemented in the code are not fully
equivalent to the documentation.

∃𝑝 ∈ 𝑃,¬(𝑐 ⇔ 𝑝) (2)

For constraints containing sub-constraints that do not exist in the code logic, we employ a heuris-
tic approach to provide suggestions. Specifically, when a constraint mentioned in the documentation
is not present in the corresponding code logic, we issue a warning and label this constraint as a
potential weak constraint to prompt further investigation by the user.

3.3.1 FuzzyWords. The example from Section 2.1.2 illustrates a very typical implicit constraint with
fuzzy words, where part of constraint is clearly defined while others remain uncertain. We introduce
a series of fuzzy words to help LLM extract constraints better. These fuzzy words frequently appear
in documentation but don’t represent specific values, making it challenging for the LLM to extract
them directly. We generally categorize these fuzzy words into two types: existence and non-existence.
In fuzzy words, non-existence includes “ignore”, “no effect”, “unused”, “override”, indicating that
a parameter either is unused or does not exist within code segments where other conditions are
met. Similarly, existence includes “specify”, “have an effect”, “exist”, “significant”, indicating that the
parameter is used or exists when other conditions are met.

We implement several specialized predicates to evaluate such implicit constraints. MPChecker
will first trace the target variable’s define-use chain (DU-chain) [25, 30] and then check if the defini-
tion and usage of it are existed or not under a specific program path. For instance, “exist(x)” will
check if the definition and usage of a variable x are existed in the program path with other explicit
conditions. If found, it will return True; otherwise, it will return False. Similarly, “ignore(x)” will
check whether the definition and usage of x are absent under the program path with given explicit
conditions. It can be further extended to checkweak doc-constraints. Like the example in Section 2.1.2,
gamma will be ignored not only when “affinity=nearest_neighbors” but also ignored when
“affinity=precomputed_nearest_neighbors” as well as “affinity=precomputed”.

3.3.2 Fuzzy Constraint Satisfaction. While we have employed several strategies in Phase II to
maximize LLM’s understanding of constraints and restrict randomness in outputs, inaccurate
extraction is still unavoidable. The main reasons are threefold: (1) typos inevitably occur when
developers write documentation; (2) the hallucination issues inherent to black-box generative
models; and (3) the intrinsic ambiguity in natural languages. This implies that correct documentation
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𝑐 ∈ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ::= 𝑒 | ¬𝑐 | 𝑐 ∨ 𝑐 | 𝑐 ∧ 𝑐

𝑒 ∈ 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ::= 𝑝 ⊲⊳ 𝑣

𝑝 ∈ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ::= 𝑐ℎ𝑎𝑟, {𝑐ℎ𝑎𝑟 | 𝑑𝑖𝑔𝑖𝑡}
⊲⊳ ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ::= < | > | <= | >= | = | !=

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒 ::= 𝑠𝑡𝑟𝑖𝑛𝑔 | 𝑛𝑢𝑚𝑏𝑒𝑟 | 𝑏𝑜𝑜𝑙

Fig. 7. Extended Backus-Naur form for multi-parameter constraint.

descriptions can generate incorrect doc-constraints, and incorrect documentation descriptions can
also have the chance to generate correct doc-constraints.
In the absence of LLM unpredictability, detecting CDI issues is a crisp constraint satisfaction

problem (CSP), deciding whether a doc-constraint is consistent with the actual code implementation.
Nevertheless, due to minor errors introduced by LLMs, such as a single letter being wrongly spelled
in a parameter name, or a comparison operator being reversed, e.g., writing “<” instead of “>”, a
doc-constraint can be mistakenly identified as inconsistent when it is actually correct.
To address this, we proposed a customized fuzzy constraint logic that reconciles such unpre-

dictability. In a traditional fuzzy constraint [31, 56], a membership function assigns a degree of
satisfaction (ranging from 0 to 1) to each possible variable value. It enables partial fulfillment of
a condition, with satisfaction measured on a continuous scale. In our case, a constraint needs to
be measured on a new scale, assessing “how likely” the extracted doc-constraint conforms to the
code-constraints. Therefore, we introduced a unique similarity computation which serves as the
membership function.
Figure 7 shows an EBNF grammar for our multi-parameter constraints. A multi-parameter

constraint is a combination and nesting of binary expressions and Boolean operators, which can be
viewed as a complete binary tree where leaf nodes are binary expressions over single parameters
and non-leaf nodes are logical operators connecting them. Without loss of generality, we only keep
negation, conjunction, and disjunction in the constraints; logical relations such as implications
can be simplified accordingly. The fuzziness of a constraint is defined with respect to a set of
environment expressions, facts that are known to hold (with a truth value of 1). In other words,
the instantiation of a specific tree structure and nodes is a constraint 𝑐 evaluated against a set of
expressions {𝑒1, 𝑒2, . . . , 𝑒𝑛}. Next, we define the membership function of our fuzzy constraint logic
through a few similarity functions.

Definition 3.1 (Expression Similarity). The similarity between two expressions 𝑒1 and 𝑒2 is defined
as,

𝜎 (𝑒1, 𝑒2) = 𝛼 ∗ (1 − 𝐿𝐷 (𝑝1, 𝑝2)
max( |𝑝1 |, |𝑝2 |)

) + 𝛽 ∗ (
𝛿⊲⊳1 · 𝛿⊲⊳2

∥𝛿⊲⊳1 ∥∥𝛿⊲⊳2 ∥
) + 𝛼 ∗ (1 − 𝐿𝐷 (𝑣1, 𝑣2)

max( |𝑣1 |, |𝑣2 |)
), (3)

where 𝛼 and 𝛽 denote the relative weights, 𝑝 , ⊲⊳, and 𝑣 are parameter, operator, and value, respec-
tively, |𝑝 | and |𝑣 | denotes the length of 𝑝 and 𝑣 , ∥𝛿⊲⊳∥ denotes the magnitudes (or Euclidean norms)
of the vector 𝛿⊲⊳.

The similarity between two expressions are considered separately for the parameters, operators,
and values appeared in the expressions. Both 𝑝 and 𝑣 can be treated as texts, therefore, Levenshtien
Distance (a.k.a. edit distance) is used to represent their similarity. The normalized Levenshtien
Distance (NLD) is given in Eq. (4), where 𝑠 denotes strings (𝑝 or 𝑣) and |𝑠 | denotes the length of it.
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𝜂 (𝑠1, 𝑠2) = 𝑁𝐿𝐷 = 1 − 𝐿𝐷 (𝑠1, 𝑠2)
max( |𝑠1 |, |𝑠2 |)

(4)

𝛿⊲⊳ = (𝐶, 𝐸,𝐺, 𝐿, 𝑁 ),where 𝐶, 𝐸,𝐺, 𝐿, 𝑁 ∈ {0, 1} (5)

𝑐𝑜𝑠𝜃 (⊲⊳1, ⊲⊳2) =
𝛿⊲⊳1 · 𝛿⊲⊳2

∥𝛿⊲⊳1 ∥∥𝛿⊲⊳2 ∥
(6)

As illustrated in Eq. (5), we design an operator embedding across five key dimensions:Comparison,
Equality, Greater than, Less than, and Negativity. This way, we may calculate the similarity be-
tween two operators by simply calculating the cosine similarity between two vectors. The result is
highly intuitive. For example, with 𝛿< = (1, 0, 0, 1, 0), 𝛿> = (1, 0, 1, 0, 0), and 𝛿<= = (1, 1, 0, 1, 0), the
similarity between “<” and “>” is 0.5, while the similarity between “<” and “<=” is 0.82.
The weight of operator similarity is set as 𝛽 such that the weights of operators, values, and

parameters within a given experssion should sum to one. Thus, we have 𝛼 =
1−𝛽
2 and the similarity

𝜎 of two single parameter expressions (i.e., atomic constraint) can be calculated according to Eq. (3).

Definition 3.2 (Constraint Similarity). Let 𝑐 be a constraint and Φ = {𝑒𝑖 |𝑖 = 1, . . . , 𝑛} be a set
of environment expressions assumed to hold true. The similarity of 𝑐 against Φ is given by the
following set of calculations.

𝜌 (𝑐,Φ) =


argmax

𝑒𝑖 ∈Φ
𝜎 (𝑒, 𝑒𝑖 ), if 𝑐 is an expression 𝑒

1 − 𝜎 (𝑐′,Φ), if 𝑐 = ¬𝑐′

min{𝜎 (𝑐1,Φ), 𝜎 (𝑐2,Φ)}, if 𝑐 = 𝑐1 ∧ 𝑐2

max{𝜎 (𝑐1,Φ), 𝜎 (𝑐2,Φ)}, if 𝑐 = 𝑐1 ∨ 𝑐2

(7)

Consider an atomic constraint with a single expression; its similarity to Φ associated with a set
of environment expressions can be represented by the maximum expression similarity among all
expressions within Φ. Based on the conjunctive combination principle [72], when combining two
constraints using a conjunction, their degree of joint similarity 𝜌 should be represented by the
minimum similarity between them. Similarly, based on the disjunctive combination principle [72],
when they are combined with a disjunction, the maximum similarity should be used. For negation,
the complementary similarity is used.

Definition 3.3 (Membership Function for Fuzzy Constraint Satisfaction). Constraint similarity
serves as the membership function 𝜇Ω , quantifying the degree to which a given constraint 𝜖 is
consistent with the code, which is represented as a set Ω of path constraints 𝜔 :

𝜇Ω (𝜖) = 𝜌 (𝜖,ΦΩ) · 𝜖 [𝑒 ↦→ 𝑒ΦΩ ] (8)

where ΦΩ denotes the set of expressions aggregated from all the path constraints in Ω, and
𝜖 [𝑒 ↦→ 𝑒ΦΩ ] is a rewrite of 𝜖 , where each expression 𝑒 has been replaced by its cloest counterpart
from ΦΩ .

The inconsistency between the modified constraint 𝜖 [𝑒 ↦→ 𝑒ΦΩ ] and Ω is then evaluated (ac-
cording to Eq. (1) or Eq. (2)), yielding a binary result (True or False). To enable the probabilistic
interpretation, a linear transformation ensures complementary probabilities. For instance, “0.7·False
= 0.3·True”, indicating a 70% probability of inconsistency or a 30% probability of consistency.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA068. Publication date: July 2025.



ISSTA068:14 Xiufeng Xu, Fuman Xie, Chenguang Zhu, Guangdong Bai, Sarfraz Khurshid, and Yi Li

3.3.3 Constraint Similarity Threshold. LLMs demonstrate a great potential in constraint extraction,
yet they still encounter errors such as using incorrect parameter names or values and introducing
non-existent constraints. To reduce false positives from these inevitable issues, we set a constraint
similarity threshold of 0.85. This is based on the observation that a high constraint similarity (>0.85)
indicates a high likelihood of misinterpretation or conflation by the LLM.

For instance, in scikit-learn, the documentation of LinearSVC states: “If n_samples < n_features
and optimizer supports chosen loss, multi_class and penalty, then dual will be set to True”. However,
the extracted constraint is “(samples<features)∧(dual=True)”, where two parameters are mis-
takenly mapped to similar names. Their constraint similarity is 0.86, exceeding the threshold,
leading MPChecker to discard the result. Moreover, in most cases where the expression contains
only a single parameter, the threshold exhibits stronger filtering capability.

However, setting a threshold cannot entirely exclude all false positives, as there is no definitive
rule to ascertain whether an error originates from the documentation or the LLM. Another example
from scikit-learn illustrates this limitation: the documentation of estimator_ states: “The child
estimator template used to create the collection of fitted sub-estimators”. Yet, the extracted constraint
“(estimator_=child_estimator_template) ∧ (collection=fitted_sub_estimators)” has a
constraint similarity of 0.67, which is below the threshold, leading MPChecker to accept the result.

4 Evaluation
This section describes our evaluation of MPChecker. We first present our research questions, then
detail the experiment setup and evaluation subjects. Finally, we analyze our experimental results
and answer each research question. Our evaluation was guided by the following research questions:
(1) RQ1: How accurate is MPChecker in extracting constraints from API documentation?
(2) RQ2: How effective is MPChecker in detecting errors related to multi-parameter constraints

in API documentation?
(3) RQ3: How effective can MPChecker detect unknown inconsistency issues?

4.1 Experiment Setup
4.1.1 Dataset. There is currently nowell-established dataset specifically focusing onmulti-parameter
API documentation errors. To better evaluate the effectiveness of our tool, we constructed two
datasets: a constraint dataset and an inconsistency dataset.

Constraint Dataset. We constructed a dataset containing 72 constraints from 4 popular open-
source data science libraries with well-maintained documentation, including scikit-learn, scipy,
numpy, and pandas. The constraints were gathered by analyzing commits from each GitHub reposi-
tory, focusing on developers’ modifications to documentation related to multi-parameter constraints.
To streamline this process, we developed an automated script to collect all documentation-related
commits and identify changes within parameter (including attribute) descriptions, adhering to two
distinct docstring styles (see details in Figure 4). By mapping parameter names to their descriptions,
it then cross-checks if any parameter names appear within others’ descriptions to keep potential
constraint-related documentation. Approximately 90% to 95% of irrelevant commits are excluded,
leaving a smaller subset of commits that may contain constraints. Additionally, we perform a ran-
dom sampling of the excluded commits to assess and minimize the impact of this heuristic. Despite
the approach’s proven effectiveness, the remaining subset still contains a substantial number of
submissions. Each of the four repositories has over 30,000 commits, requiring manual verification
of approximately 1,500 commits per repository to further identify multi-parameter constraints. For
each constraint, we log its source information (repository name, SHA, file path, etc.) and retain the
code file, enabling swift extraction of documentation and code for reproducibility. In some cases,
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Table 1. Data science libraries used in the experiments

Project class class w/ doc func func w/ doc KLOC avg. params #Stars
scikit-learn 878 306 9,332 1535 400.1 1.42 61.8K
pandas 2,211 102 28,880 1432 620.6 1.14 45.2K
scipy 2,570 142 22,059 1705 517.9 1.30 13.6K
numpy 2,000 51 12,618 902 276.3 0.83 29.4K
keras 1,370 254 9,877 724 218.5 1.42 62.9K
dask 284 26 6,914 368 157.5 1.33 13.1K
statsmodels 2,184 273 11,590 1,894 424.6 1.32 10,6K

the condition enforcing the constraint is located not in the current function but in a function it
calls, leading to a mismatch between documentation and code. To address this, we record such
mismatches and relocate the constraint description to the function where the check actually occurs.

Inconsistency Dataset. Based on constraint dataset, we constructed an inconsistency dataset
comprising 126 multi-parameter constraints that lead to code-documentation inconsistencies. We
analyzed around 20 resolved GitHub issues related to multi-parameter constraints and identified
eight common patterns that may cause CDI: (1) Parameter name change; (2) Value Change; (3)
Logic Change; (4) Remove Parameter; (5) Add Constraints; (6) Remove Constraints; (7) Missing
Documentation; (8) Modify Description. To better evaluate the capabilities of our tool, we applied
these eight patterns to mutate the dataset based on the Constraint Dataset. For each constraint, we
applied two types of modifications, resulting in an inconsistency dataset containing 216 constraints.
We feed the mutated constraints and the original constraints into an SMT solver to verify if the
mutations violate the original constraints. We also manually inspected each of them to ensure
the constraint was inconsistent. It is important to note that modifying a correct constraint does
not necessarily turn it into an incorrect one. As a result, we obtained an Inconsistency Dataset
containing 126 inconsistent constraints and 90 consistent constraints. In a sense, our dataset can be
considered as potential inconsistencies that may realistically occur during development.

4.1.2 Subjects. Table 1 lists 7 popular libraries that MPChecker evaluated on, first four for dataset
construction and last three for assessing MPChecker’s ability to detect unknown issues. The
selected libraries are of high quality and widely used, with tens of thousands of stars on GitHub.
These libraries are substantial third-party libraries, averaging 1,642 classes, 14,467 functions, with an
average of 373.6 thousand lines of code, and each function containing an average of 1.3 parameters.
Our tool extracts documentation constraints and path constraints from these libraries and uses a
fuzzy constraint reasoner to detect inconsistencies.
MPChecker was implemented in Python. All the experiments were performed on an Intel(R)

Xeon(R) Silver 4214 CPU @ 2.20GHz machine with 252GB of RAM, running Ubuntu 18.04, with
Python 3.8.19 and Z3 4.13.0.When evaluating the constraint extraction performance (RQ1), we access
the GPT-4 model through OpenAI’s API. For result validation, given the absence of established
benchmarks in this domain, two volunteer researchers independently reviewed the constraint
extraction results from GPT-4, manually assessing each constraint’s consistency with the original
Python documentation. Any discrepancies were resolved through consensus discussion.

4.2 Results
4.2.1 Accuracy of LLM in extracting constraints from API documentation. We display the result
of RQ1 in Table 2. Our experiment shows that our tool correctly identified and extracted 66 out
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Table 2. Results of MPChecker on constraint extraction

Equivalent Non-Equivalent Accuracy

Correct
extraction

Incorrect
extraction

Missing
constraints

MPChecker w/o few-shot learning 45 20 7 62.5%
MPChecker w/o chain-of-thought 57 7 8 79.2%
MPChecker 66 2 4 91.7%

of 72 constraints contained in the Python documentation collected in our benchmark, achieving
an accuracy of 91.7%, which demonstrates that our tool can successfully extract most of the
constraints accurately, with few errors or omissions. Next, we look into the remaining failed
cases and investigate the reasons for the inaccuracy. We found that out of the 6 incorrect cases,
4 involved missing constraints during the documentation processing. For example, one of the
missing constraints is: “(batch_size = auto) → (batch_size = min(200, n_samples))”. Although this
case involves a constraint between multiple parameters, the format is tricky because one of the
parameters is within a function, which may have misled GPT-4 and caused it to miss this constraint
during extraction. In the last 2 cases, the constraint information was identified but converted into
incorrect logic expressions due to the complex logic or sentence structure.

We further explore MPChecker’s abilities by conducting an ablation study. The results show that
MPChecker without few-shot learning achieves an accuracy of 62.5%. Most failures occur in the
incorrect extraction of constraints. This indicates that including few-shot learning is important for
MPChecker to generate accurate constraints. Next, MPCheckerwithout applying chain-of-thought
techniques results in an accuracy of 79.2%, with the number of missed constraints accounting for
more than half of total non-equivalent cases. This suggests that GPT tends to miss more details in
documentation when chain-of-thought is removed. After including chain-of-thought and few-shot
learning, MPChecker’s performance shows a clear improvement.
Answer to RQ1: MPChecker correctly extracted 66 constraints out of 72 in total, achieving an
accuracy of 91.7%. This demonstrates that MPChecker is effective in extracting constraints from
Python documentation.

4.2.2 MPChecker’s effectiveness in detecting multi-parameter API documentation errors. Tomeasure
MPChecker’s effectiveness in detecting multi-parameter API documentation errors, we evaluated
our tool on the inconsistency dataset. Table 3 shows the results of MPChecker in detecting
multi-parameter CDI on the inconsistency dataset.
The Vanilla MPChecker does not include fuzzy words or apply fuzzy constraint satisfaction

theory, limiting its ability to handle implicit constraints. Despite these limitations, it achieved
an impressive 69% precision by detecting 89 inconsistencies. With the addition of fuzzy words
and fuzzy constraints, MPChecker’s performance significantly improved, successfully identifying
119 inconsistencies with a precision of 92.8%. This demonstrates that incorporating fuzzy words
and fuzzy constraints can expand the range of detectable constraints. However, we observed two
false positives. These two false positives occurred because the constraints involved were between
parameters and method calls, rather than between the parameters. One example is shown below:

(shape = None) ∧ (axes ≠ None) → (shape = numpy.take(x.shape,axes,axis=0))
where, the value for “shape” is the function “take()” from numpy library. Modern software

increasingly emphasizes code maintainability and reusability, leading to highly complex function
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Table 3. Results of LLM and MPChecker on detecting multi-parameter CDIs

Checker FP TP Precision
LLM 117 7 5.6%
LLM+C 74 52 41.3%
Vanilla MPChecker 2 87 69.0%
Fuzzy MPChecker 2 117 92.8%
LLM: raw documentation and corresponding code; LLM+C: extracted doc-constraints from docu-
mentation and corresponding code; Vanilla MPChecker: MPChecker without fuzzy words and
fuzzy constraint logic; Fuzzy MPChecker: MPChecker with fuzzy words and fuzzy constraint logic.

calls, often involving nested or chained calls. To avoid the high risk of path explosion in symbolic
execution, we alternate function calls with symbolic inputs during the preprocessing phase, which
leads to misclassification of these two inconsistencies.
The remaining 9 unresolved constraints stem from external function dependencies. While in-

corporating external function code could resolve these constraints, this approach risks infinite
recursive dependencies and path explosion. For us, best practices suggest that constraints should
be handled within the documented function itself.
A notable situation arose during one of our issue reporting, even though our issue had been

confirmed, we encountered dissatisfaction from one of the developers. He believed we were an
automated tool or bot based on AI because of our anonymous status, which diminished his en-
thusiasm for addressing the issue. With a mass of LLM-based program analysis or inconsistency
checkers now available, while they offer insights sometimes, their results often cost more manual
verification than traditional tools due to higher uncertainty.

Comparative Study. Therefore, we conducted a comparative experiment between our tool and
the approach of using only LLMs as a constraint checker on the same dataset. To align with our
experiment settings, we chose GPT-4, one of the leading models, for comparison and evaluated
its performance under two settings: 1) LLM: providing the raw documentation and code as input,
directly prompting GPT to check for consistency, and 2) LLM+C: This is a two-phase processing.
Extracting constraints using the LLM first, and then providing both these constraints and their
corresponding code to the LLM for consistency check. In addition, we also require LLM to provide
justifications for its answers.
As shown in the Table 3, when raw documentation and the corresponding code were provided

as inputs to the LLM, LLM demonstrated significant limitations in detecting multi-parameter CDIs,
finding only 7 inconsistencies with a precision of 5.6%. When extracted constraints and code
were given as inputs, LLM+C demonstrated heightened awareness of the task and had a higher
probability of locating the constraint-related code segments. However, it still struggled to determine
inconsistency. Out of 126 inconsistent constraints, 52 were identified correctly, yielding a precision
of 41.3%. After a thorough review of LLM’s responses, we found that LLM+C gave correct results
in many cases but provided unreasonable or even wrong explanations. These results demonstrate
that the LLM still has limitations in detecting complicated multi-parameter CDIs, highlighting that
our method’s design is the key factor in enhancing detection performance rather than any reliance
on potential pretraining data leakage.
Answer to RQ2: Large language model (LLM) exhibits limited capability in handling multi-
parameter CDIs. Compared to LLM+C with a precision of 41.3%, Fuzzy MPChecker successfully
detected 117 out of 126 inconsistent constraints, achieving a 92.8% precision. Notably, Fuzzy
MPChecker demonstrated a 23.8% higher precision than Vanilla MPChecker, substantiating
the effectiveness of the implementation of fuzzy words and fuzzy constraint logic.
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Constraint description of X and Gram in function lars_path

> X : None or ndarray of shape (n_samples, n_features)

Input data. Note that if X is None then the Gram matrix must be specified , i.e, can-
not None or False.

Corresponding code snippet in function lars_path

1 def lars_path(...):

2 if X is None and Gram is not None:

3 raise ValueError("X cannot be None if Gram is not None. Use lars_path_gram to avoid

passing X and y.")

Fixed Constraint description of X and Gram in function lars_path

> X : None or ndarray of shape (n_samples, n_features)

Input data. Note that if X is None, Gram must also be None. , If only the Gram matrix

is available, use lars_path_gram instead.

Fig. 8. Example of the fixed documentation from Scikit-learn.

4.2.3 Practical effect ofMPChecker. Our tool’s effectiveness in detecting unknownmulti-parameter
inconsistencies was validated by manual review and developer feedback. We reported 14 inconsis-
tencies identified by MPChecker to the library maintenance team, receiving positive engagement
and warm responses. Two of them even sparked further discussions about potential issues. This not
only affirmed our reports’ quality but also reflected the enthusiasm of the open-source community.
For example, an issue confirmed by the scikit-learn team originates from the independent

function “lars_path”, as shown in Figure 8. Apparently, an inconsistency exists between the docu-
mentation and code regarding whether “Gram” is None when “X” is None. Therefore, we reported
the issue [10] and detailed the documentation sections with inconsistencies alongside its corre-
sponding code snippet. The developer made a bit of archeology, admitted the documentation needed
to be updated, and asked if we wanted make a PR to correct this error. Finally, the documentation
description was fixed to “If X is None, Gram must also be None”.
For most issue reports, we received quick feedback, and 11 inconsistencies were confirmed

and improvements were made to documentation or code. Of the remaining three cases, two were
reported at the initial phase of our experiments when our understanding of the project architecture
was insufficient. The checks for these two constraints are done in other deeper files, but we were
unable to verify them accurately at that time. The third inconsistency stemmed from ambiguity in
the natural language, which resulted in a different interpretation diverged from the developers’
original intent. Furthermore, these reported issues have contributed to four DS/ML repositories
(scikit-learn, keras, statsmodels, dask), which emphasizes the generalization of our tool.

At the time of writing, 10 out of 11 confirmed inconsistencies have been resolved: 7 through
documentation fixes and 3 through updates to both documentation and code. This aligns with
intuition: code errors are more likely to cause runtime failures and are thus easier to detect, whereas
documentation errors and their potential efficiency impacts are often subtler and harder to identify.
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Answer to RQ3:We reported 14 multi-parameter inconsistencies detected by MPChecker to
library developers, who have already confirmed 11 inconsistencies by the time of submission
(confirmation rate = 78.6%) [1–11]. These results demonstrate that MPChecker can effectively
detect unknown API documentation errors. Some of them are even in unseen libraries which
highlights its strong generalization capability.

5 Discussions
5.1 Threats to Validity
Internal. There is no established ground truth for multi-parameter code-documentation in-

consistencies. To mitigate this, we manually reviewed and verified inconsistencies detected by
MPChecker. Given the complexity of multi-parameter constraints, two of our authors spent an
additional 10 minutes per inconsistency to verify whether it was a true positive. Moreover, many of
the confirmed true positives were further validated by the original library developers, enhancing
the credibility of our manual labeling. Additionally, since the GPT-4 model used in our experiments
had its last knowledge update in April 2023, and our first issue submissions occurred in February
2024, the risk of data leakage is not a significant concern for our approach.

External. Our tool may not fully generalize to all Python libraries, particularly those outside the
data science domain. Although our approach is designed to be broadly applicable, we concentrated
on data science libraries due to several practical considerations: (1) they are among the most
widely used in the Python ecosystem, (2) they commonly employ the two major docstring formats
that MPChecker supports, and (3) they provide well-structured documentation with rich multi-
parameter constraints. To enhance the representativeness of our evaluation, we selected high-quality,
widely adopted libraries with comprehensive API documentation and accessible source code. A
further limitation arises from the unmature Python symbolic execution tools, which may not yet
robustly handle all the latest language features. Addressing these challenges will require continued
engineering efforts to broaden the applicability of our tool.

5.2 Application Prospects
Our framework’s language-agnostic design extends beyond dynamic languages like Python, such
as Java, where type information facilitates more comprehensive CDI detection.
Our work represents an effective integration of LLMs and traditional software analysis, with

fuzzy constraint logic (FCL) acting as the glue that enables smooth synergy between the two. For
example, LLMs have been recently used to infer program specifications from code [38]. In contrast to
conventional verification techniques that yield binary outcomes—either True or False, FCL enables
probabilistic evaluation of invariant validity within code contexts. This probabilistic framework
will integrate better with LLMs, which may generate close yet incorrect program specifications. In
particular, FCL can reduce non-logical errors caused by confusion between similar terms.

6 Related Work
API Documentation Analysis. Numerous empirical studies have revealed the challenges of main-

taining high-quality API documentation [12, 13, 15, 20, 26, 29, 35, 42, 57, 60, 65, 77]. These studies
indicate that documentation errors are prevalent, even in well-established and widely-used libraries.
Additionally, an empirical study from Aghajani et al. [12] shows that linguistic antipatterns in
APIs increase the likelihood of developers introducing errors and raising more questions compared
to using clean APIs. Saied et al. [57] conducted an observational study focusing on API usage
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constraints and their documentation. Zhong and Su [78] proposed a method that combines natural
language processing (NLP) with code analysis to identify errors in API documentation, specifically
targeting grammatical mistakes (such as spelling errors) and incorrect code references (i.e., names
that do not exist in the source code). Lee et al. [32] developed a technique to extract change rules
from code revisions and apply them to detect outdated API names in Java documentation, with a
particular focus on names of Java classes, methods, and fields.
Another related field is code comments inconsistency [17, 23, 34, 44, 47, 64, 69, 73]. Existing

research on code comment analysis predominantly follows two approaches. The traditional method
employs program analysis and heuristic rules to detect inconsistencies between comments and the
code. Technologies like CUP [37], CUP2 [36], and HebCup [33] exemplify this approach, focusing
on automatic just-in-time comment updates when corresponding code changes. The alternative
approach leverages NLP techniques, particularly LLMs, to retrieve and extract information from
software artifacts.

MPChecker focuses on a distinct problem, specifically on API documentation errors arising from
multi-parameter constraints. These issues are more subtle and challenging to detect, particularly
within data science libraries built on the dynamic language Python.

LLM-based Program Analysis. A line of research [28, 43, 66, 70, 71, 74, 74] focuses on using LLMs
on program analysis. Wadhwa et al. [66] focus on using LLMs to resolve code quality issues in
multiple code languages. Several recent researches [28, 70, 71] address applying LLMs on program
repairing issues. Nam et al. [43] apply the GPT model to explain code and provide usage details.
The existing approaches focus on different purposes compared to MPChecker. Zhang et al. [75, 76]
use LLMs to extract constraints from code comments, and apply AST-based program analysis to
identify inconsistencies. Rong et al. [54] propose C4RLLaMA, a fine-tuned large language model
based on the open-source Code Llama, to detect and correct code comment inconsistencies.

Overall, MPChecker’s approach is distinct in two aspects. First, MPChecker specifically focuses
on detecting inconsistencies in multi-parameter constraints, which is a missing piece in state-of-
the-art works. Next, MPChecker deals with code documentation, which involves longer and more
complex text, and is more diverse than most code comments.

7 Conclusion
In this paper, we proposeMPChecker, a multi-parameter constraint checker for Python data science
libraries. MPChecker utilizes both LLMs and symbolic execution to detect inconsistencies between
code and documentation. To mitigate the uncertainty introduced by LLM outputs, we utilize fuzzy
constraint logic to accommodate nearly-correct parameter constraints. The experimental results
show that MPChecker is effective in identifying multi-parameter API documentation errors. We
further reported 14 detected inconsistencies, 11 of which were confirmed by the development team.
Our work intuitively explores the multi-parameter constraint inconsistencies between code and
documentation, and may inspire more future studies in this field.

8 Data Availability
The source code and dataset are available at https://github.com/ParsifalXu/MPChecker.
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