A Vision on Intentions in Software Engineering

Jacob Kriiger
Eindhoven University of Technology
Eindhoven, The Netherlands
jkruger@tue.nl

Marsha Chechik
University of Toronto
Toronto, Canada
chechik@cs.toronto.edu

YiLi
Nanyang Technological University
Singapore, Singapore
yi_li@ntu.edu.sg

Thorsten Berger
Ruhr-University Bochum &
Chalmers | University of Gothenburg
Bochum & Gothenburg

Chenguang Zhu
The University of Texas at Austin
Austin, USA
cgzhu@utexas.edu

Julia Rubin
University of British Columbia
Vancouver, Canada
mjulia@ece.ubc.ca

Germany & Sweden
thorsten.berger@rub.de

ABSTRACT

Intentions are fundamental in software engineering, but they are
typically only implicitly considered through different abstractions,
such as requirements, use cases, features, or issues. Specifically, soft-
ware engineers develop and evolve (i.e., change) a software system
based on such abstractions of a stakeholder’s intention—something
a stakeholder wants the system to be able to do. Unfortunately,
existing abstractions are (inherently) limited when it comes to rep-
resenting stakeholder intentions and are mostly used for document-
ing only. So, whether a change in a system fulfills its underlying
intention (and only this one) is an essential problem in practice
that motivates many research areas (e.g., testing to ensure intended
behavior, untangling intentions in commits). We argue that none of
the existing abstractions is ideal for capturing intentions and con-
trolling software evolution, which is why intentions are often vague
and must be recovered, untangled, or understood in retrospect. In
this paper, we reflect on the role of intentions (represented by
changes) in software engineering and sketch how improving their
management may support developers. Particularly, we argue that
continuously managing and controlling intentions as well as their
fulfillment has the potential to improve the reasoning about which
stakeholder requests have been addressed, avoid misunderstand-
ings, and prevent expensive retrospective analyses. To guide future
research for achieving such benefits for researchers and practition-
ers, we discuss the relationships between different abstractions and
intentions, and propose steps towards managing intentions.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement.

KEYWORDS

software evolution, intention, quality assurance

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0327-0/23/12.

https://doi.org/10.1145/3611643.3613087

ACM Reference Format:

Jacob Kriiger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger,
and Julia Rubin. 2023. A Vision on Intentions in Software Engineering. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °23),
December 3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3611643.3613087

1 INTRODUCTION

Software developers rely on various abstractions (e.g., features, re-
quirements, issues) to manage their software systems along the
dimensions of time (i.e., evolution) and space (i.e., functionali-
ties) [2, 5]. Essentially, these abstractions aim to capture the inten-
tion of an involved stakeholder. For example, the feature request of a
stakeholder represents an intended functionality at an abstract level,
requirements specify the boundaries of this intention, a change to
the system implements the intended behavior, and a bug report
documents a violation of this intention (cf. Figure 1). Essentially,
we argue that many of the widely established abstractions used in
software engineering implicitly describe stakeholder intentions.

While such abstractions are widely used in practice, we argue
that we should reflect on the abstractions’ relations to stakeholder
intentions as a potential means for better connecting, explaining,
and managing these intentions. In fact, we have found that, in prac-
tice, developers use issue and pull-request templates' to describe
the intended evolution of their system. Moreover, researchers have
proposed various techniques to analyze, manage, and reverse en-
gineer information on different abstractions and the underlying
intentions. Most prominently, researchers have worked on recov-
ering and untangling [6-8, 11, 12] intentions, testing as a means
to ensure intended behavior [19], or verifying changes against a
specified intention [22, 29].

Apparently, developers as well as researchers care about know-
ing and specifying intentions. Particularly, we consider software-
change intentions (SCls) as an interesting notion that can help de-
scribe a developer’s underlying intention for changing a system
(e.g., fixing a bug, refactoring, implementing a requested feature)
and that can connect other, more established abstractions intu-
itively to each other. However, existing attempts for managing SCIs
focus on documenting (e.g., pull-request templates) or recovering

Lhttps://docs.github.com/en/communities/using-templates-to-encourage-useful-
issues-and-pull-requests/about-issue-and-pull-request-templates


https://orcid.org/0000-0002-0283-248X
https://orcid.org/0000-0003-4562-8208
https://orcid.org/0000-0002-7343-8279
https://orcid.org/0000-0002-6301-3517
https://orcid.org/0000-0002-3870-5167
https://orcid.org/0000-0001-7280-1614
https://doi.org/10.1145/3611643.3613087
https://doi.org/10.1145/3611643.3613087
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

typical software-development workflow

Jacob Kriiger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger, and Julia Rubin

feature request requirements software changes commit message pull request review test cases bug report
' lazy check > - x — L)
e g N -
g Ak
v v v v v v

deriving intention specification implementing intention

eager declaration

conformance checking against specification

verify ———p——

vision for a controlled software-development workflow

()
control
%

Figure 1: Sketch of a typical software-development workflow (top) and its relations to our vision for a more controlled workflow

based on explicitly specified SCIs (bottom).

them after the fact. In the former case, we cannot ensure that the
documented SCI aligns with the actual change; in the later case,
a tangled or wrong SCI may already be in the system. Both cases
are lazy strategies for managing SClIs, and can easily lead to bugs,
cluttered version histories [9], or additional efforts when review-
ing and quality assuring a system [10]. Moreover, recovering and
potentially untangling SCIs after they have been implemented is
costly and cognitively challenging [25, 27], especially because only
the actual developer knows what their concrete SCI was. Conse-
quently, research on software engineering and evolution also faces
challenges, for instance, when the goal is to identify and investigate
bug-inducing or refactoring changes.

In this paper, we reflect on existing abstractions in software
engineering and their connections to intentions as represented
in changes (i.e., SCIs). We argue that research into this direction
can help researchers obtain a better conceptual understanding of
software development that, in turn, can guide the design of novel
techniques. As a concrete instantiation for tackling the aforemen-
tioned problems, we sketch the idea of employing an eager strategy
for managing SClIs (cf. Figure 1). Specifically, we outline how em-
pirically collected and formally declared SCIs can help (i) control
that only a specific SCI can be employed, (ii) verify that a change
matches its SCI, and (iii) ensure a reliable documentation through-
out a system’s evolution. Since this is a long-term vision that is
challenging to achieve, we propose intermediate steps for moving
into this direction and obtaining novel insights in the mean time.

2 WHY MANAGE INTENTIONS

We reflect on the notion of SCIs as a helpful means for software
engineering by discussing the use of different software-engineering
abstractions, reviewing related work, and considering observations
we made in open-source as well as industrial projects.

Reflection on Research. In research, many techniques and tools
aim to recover some form of SCIs from version histories, for in-
stance, to identify refactorings [28] or refactor the version history
itself [23]. Other researchers have focused on measuring efforts
based on SCIs or predicting and understanding the impact of cer-
tain SCIs [18, 21]. Consequently, having more control and a better
mapping of SCIs to the actual changes is highly interesting for
researchers. This promotes our vision of managing and controlling
SClIs via eagerly specifying them (cf. Figure 1), allowing to con-
trol the fulfillment of SCIs, to automatically and reliably document
changes, and thus to improve data quality, reliability, as well as
analyses for researchers and practitioners.

Already in 1976, Swanson [26] started to classify SCIs by defining
high-level maintenance activities, namely:

e Adaptive changes are intended to update or modify a sys-
tem to keep it compatible, for instance, with the underlying
hardware or other systems.

e Corrective changes are intended to fix bugs, design flaws,

or security issues in the system.

Enhancive (added later) changes are intended to add new

functionality (or tests) to a system, providing new features

with specific requirements to the stakeholders.

Perfective changes are intended to improve the system, for

instance, by optimizing its properties, refactoring code, or

deprecating functionality.

Such SCIs have been used extensively to classify changes, but they
are rather abstract and more fine-grained SClIs are likely more
helpful for researchers and developers—also to untangle changes
with multiple SCIs. A lot of research has built upon this idea and
achieved several advancements [6, 7, 9-12, 25, 27, 29, 30], even
though recovering SClIs is less reliable than controlling them from
the beginning.
Reflection on Practice. A more interesting perspective is the prac-
tical point of view. On the top of Figure 1, we sketch an abstracted
development workflow that may occur in open-source or industrial
projects: Some stakeholder raises a feature request (their inten-
tion for the system), which is refined based on requirements (the
boundaries of the intention), and then implemented in a change.
Already at this point, misunderstandings between different stake-
holders (e.g., customer, developer) can cause severe gaps and faults
in an intention’s specification—which is why extensive research has
focused on managing features and requirements [3, 13-15, 17, 24].
Typically, developers document their implemented SCI via com-
mit messages and pull requests, which, however, are no check
whether this (and only this) SCI has been properly implemented.
For instance, GitHub allows developers to create templates for is-
sues and pull requests. The templates define a rough corpus of
what information a developer or user should provide when they
create issues or pull requests. Over time, such templates have be-
come somewhat common, with various standard templates being
collected in different repositories.? In fact, searching for “add pull
request template” returns roughly 5 million issues and 250 thousand
commits on GitHub, with large projects using such templates to
structure their documentation and communication, for instance, by

Zhttps://github.com/stevemao/github-issue-templates
https://github.com/devspace/awesome-github-templates


https://github.com/stevemao/github-issue-templates
https://github.com/devspace/awesome-github-templates

A Vision on Intentions in Software Engineering

updating their templates to align them to their needs.? Such tem-
plates involve different types of information, such as a descriptions
of what the issue or pull request is about; links to related documen-
tation (e.g., pull requests linking to a respective issue); checklists
for confirming to project styles or testing practices; and regularly a
selection of the type of change employed, which represents the SCI.
Even more, developers have derived tools for checking that pull
requests align to the specified templates, for instance, the RedHat-
powered Tyr.*

However, such templates are only used to document changes,

and the tools can only enforce that the developer fills in information
according to the template. Whether that information is correct and
whether it reflects the changes implemented in the pull request
cannot be verified using such templates. For instance, a developer
may state in the template that their SCI is to fix a certain bug and
that the pull request passed all corresponding test cases. But, the
developer may have also refactored the system or fixed another
bug. So, the information in the template may not fully represent
the actual intention underlying the pull request—it is up to the de-
veloper or reviewer to ensure that. Also, reviewers and testers have
to check that the implemented change does not conflict with the
actual SCI. Specifically, we can consider test cases as specifications
for controlling the fulfillment of intentions, but whether the test
cases properly reflect that intention is also an open problem. We
argue that it can be helpful to specify SCIs eagerly in the develop-
ment to control its fulfillment (i.e., allowing only changes to fix a
bug if that SCI is declared), rather then reviewing and testing it
lazily after the implementation.
Summary. Reflecting on these two perspectives, we perceive our
vision of managing software evolution via declaring SCIs as highly
valuable for researchers and practitioners alike. To use a simple
sketch based on Figure 1: We can imagine that an organization
wants to control that (at least) bug fixes are completely separated
from any other changes to reduce interferences caused by, for in-
stance, tangled refactorings. So, the organization derives a specifica-
tion for bug-fixing or even more fine-grained SCIs (i.e., corrective).
The specification may then build on a well-defined test suite (as
one example) and declare the conditions for the different types
(as far as possible) of SCIs. As a simple and incomplete example,
such a declaration could be: A corrective SCI is fulfilled when the
corresponding test cases before the change failed (i.e., identified a
bug) and then completely pass afterwards. Here, executing the test
suite against the system version before and after a change could suf-
fice, and could be implemented as one technique to check that the
SCI conforms with its specification. As a consequence, if a change
would fix the bug and align to the defined rules, the conformance
check would approve that the SCI of the change is fulfilled.

Note that this is a simple and limited example. We are convinced
that a single technique is unlikely to ensure the fulfillment of a SCI,
which is already the case for our test-based example. Specifically,
test cases may also tangle intentions or misrepresent them. More-
over, the exact meaning, differences, and possible specifications for
the various types of SCIs are rather vague. As a consequence, we
see the need to better explore different types and granularities of

3https://github.com/ionic- team/ionic-framework/pull/25286
4https://github.com/jboss/tyr

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

SCIs, aiming to understand how to distinguish them. Then, starting
with a few concrete SCls, we can explore how well specifications
and techniques can help to clearly identify, specify, and control SCIs
in a change. This is clearly a challenging and long-term research
vision, but we are convinced that it can lead to immense benefits
regarding the management and evolution of software systems as
well as their consequent quality. For example, to explore the fea-
sibility and real-world potential of our idea in the short-term, we
envision that, instead of controlling SCIs eagerly, we collect and
develop concepts for lazily checking SCIs (cf. Figure 1).

3 A VISION OF MANAGING INTENTIONS

At the bottom of Figure 1, we sketch a coarse overview of our vision
for improving the management of SCIs. For example, imagine an
organization that wants to control the evolution of its software
system using branches. Specifically, the developers may be allowed
to create a branch, but they have to declare what they intend to
implement in that branch (e.g., fixing a bug). Our idea is to design
a technique that could then control that only the specified SCI can
be executed and integrated back into the main system. This would
result in a more understandable version history by avoiding tangled
SClIs, limit quality problems, facilitate comprehension of changes
and version histories, simplify code transplantation, improve docu-
mentation, and simplify automated analyses—among many more
benefits. Next, we describe this idea in more detail. Note that an
organization or developer community must define the extent to
which they employ and control SCIs, but we envision developing
techniques and tools that provide a reusable foundation.

First, for each of the SCIs, we have to derive an intention
specification. This specification shall define the properties and
values of each SCI, such as a unique identifier to track every change,
what properties have to hold to verify that the SCI is fulfilled, or
what types of checks will be executed. We consider the specification
to serve as the foundation against which a change will be verified.
As a consequence, an intention specification must be associated
with a certain type of change (e.g., commit or branch level). Note
that the intention specifications can be employed already when a
change starts to eagerly control its fulfillment, or the changes can
be lazily checked against the specification to assess a change after
the fact. For managing the different specifications, we can envision
an intention meta model that describes what types of SCIs are
allowed, how these are specified, and on what level of abstraction
they are executed. Building on our insights from a literature review
and own work on such specifications [1, 22], we understand that
SCIs can be on various levels of abstraction, such as the high-level
intentions of adaptive, corrective, enhancive, and perfective that build
on the taxonomy of Swanson [26] down to low-level intentions of
adding a feature or fixing a bug. The SCIs that are relevant for an
organization, their boundaries, and their granularity can be defined
or selected by the organization or researchers.

Second, we aim to implement conformance checks that ensure
that an implemented change fulfills its specified SCI. Specifically,
we envision that several techniques are integrated into an inten-
tion library to distinguish and check SCIs based on the defined
specifications as well as meta model. For our long-term vision, we
envision to incorporate these checks continuously, enabling novel


https://github.com/ionic-team/ionic-framework/pull/25286
https://github.com/jboss/tyr

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

techniques to check that SCIs are fulfilled throughout the entire
system evolution. Depending on which strategy an organization
employs (i.e., lazily checking, eagerly controlling), such a library
can warn about violations of SCIs or not even allow developers
to execute such violations. We argue that various different tech-
niques can and must be used to balance each technique’s strengths
and weaknesses, for instance, test cases, software verification, or
formalized operations on the system. Notably, defining the inten-
tion specifications and how to execute corresponding conformance
checks lazily or eagerly is the most challenging aspect of our idea.

4 STEPS FOR FUTURE WORK

To advance towards our vision of improving software evolution,
we see several open research gaps. In the following, we describe
these gaps, sketch some first steps into each direction, and what
(intermediate) benefits addressing these gaps can yield.
Understanding Intentions. A primary step to specify intentions is
to understand how developers are expressing, using, and reflecting
on what types of SCIs. This way, we are able to identify in what
context SCIs are relevant to them and for what purposes SCIs are
used. As a step towards this direction, we need empirical studies, for
instance, on pull-request templates (e.g., whether they are used and
enforced, what they exhibit) or developers’ cognition (e.g., whether
they are thinking about and in terms of SCIs [16]). Before eliciting a
complete model of SCIs, we see this as beneficial to understand how
developers interact and behave with their software systems and its
evolution. Understanding such aspects would greatly help design
novel concepts for program comprehension and adapt existing
solutions to new foundational insights on developers’ cognition.
Intended versus Actual Change. Stakeholders and developers
usually have a particular SCI in mind, for instance, adding a new
feature (i.e., enhancive). However, this SCI may not be implemented
as planned, leading to misbehavior or bugs, due to the actual change.
As a result, corrective or perfective changes are needed, aiming to
get the actual behavior in line with the intended one. So, in addition
to one of such four classes, each change may also be distinguished
based on whether it fulfills its SCI. Identifying changes that do
not fulfill their SCI can help developers identify bugs faster and
avoid the propagation of faulty code. Also, understanding the root
causes for a mismatch in intended and actual behavior is key to
define specifications for SCIs, since they represent under what
circumstances such specifications are violated.
Behavior-Changing versus Behavior-Preserving Intention.
While most changes are intended to change system behavior (e.g.,
fixing a bug, adding new functionality), others are not (e.g., refac-
toring, ensuring compatibility with hardware). So, some SCIs can
also be considered as behavior preserving. This distinction can help
identify changes relevant for certain software-engineering activi-
ties, but most importantly, it is arguably much more challenging to
specify behavior-preserving SCIs. For example, refactorings should
be behavior preserving, and knowing the corresponding changes
can facilitate library adaptations, merging, or cherry-picking by
indicating that no behavioral adaptations are required. In contrast,
a bug fix should change (i.e., correct) behavior, which is why such
changes could be identified with tests, and could help evaluate the
quality and completeness of a test suite.

Jacob Kriiger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger, and Julia Rubin

Tangled SCIs. In our ideal scenario, every change (e.g., in the
form of a commit) would represent a single, correctly implemented
SCI. However, in practice, changes often comprise multiple tangled
SClIs, for instance, fixing a bug (i.e., corrective) and refactoring
(i.e., perfective) [4, 7]. Such SCI-tangling changes are problematic,
since they are harder to comprehend for developers, complicate
integration, and challenge analysis tools. For example, developers
may want to cherry-pick and propagate a particular intention that is
tangled with other intentions. If these SCIs cannot be identified and
separated, the developers need to propagate additional, unwanted
changes to ensure correct behavior [20]. Achieving the ideal of a
one-to-one mapping between intentions and changes would help
facilitate support for such use cases. So, we argue that methods
and techniques for untangling SCIs (e.g., splitting a commit into
multiple) are important.

Declaring SCIs. Building on insights for the previous points, we
will be able to define specifications for SCIs, that is, some form of
declaration developers can use to ensure and control that only a
specific SCI is fulfilled. While there have been some attempts, such
a declaration is highly challenging (i.e., defining clear boundaries
between specific SCIs), and poses immediate new questions. For
instance, we have to define whether missing declarations for some
changes, SCIs, or parts of a software system will mean that other
declarations become invalid. Moreover, we need to identify what
we need to declare on what level of detail in what format (e.g., via
annotations or integrated tooling), and how to maintain the decla-
rations themselves. The declarations then serve as the foundation
for actually controlling software evolution.

Developing an SCI-Management Framework. Recovering SCIs
for existing systems is important to analyze and introduce SCIs in
real-world settings. To enable such an analysis, we seek a frame-
work that incorporates different techniques for recovering SClIs.
The framework must enable its users to make sense of unique,
incomplete, inconclusive, and diverging classifications of SCISs re-
covered from each technique. Building on the insights gained for
the previous directions, we aim to advance towards a management
framework that enables developers to eagerly declare and control
SCIs for software engineering. So, instead of recovering SCIs when
needed, they could be used as the primary notion for managing a
system. Ideally, this can help address the problems we highlighted,
and thus facilitate developers’ tasks.

5 CONCLUSION

In this paper, we reflected on the notion of intentions in software en-
gineering and sketched a vision for using SCIs to manage software
evolution. Our long-term vision is to declare and specify SCIs to de-
fine what developers are allowed to implement for a certain (set of)
changes, for instance, in a pull request. As guidance, we sketched
future research directions, which are primarily connected to:

e Empirically analyzing SCIs, including their relevance for
developers, their tangling, and how to distinguish them.

e Designing techniques for specifying and checking SClIs.

¢ Engineering tools for fully and eagerly controlling software
evolution based on SCIs.

This as an ambitious research agenda, but already even steps will
yield novel insights to help improve research and practice.



A Vision on Intentions in Software Engineering

REFERENCES

(1]

~
[

=

[10]

[11]

[12]

[13]

Sofia Ananieva, Sandra Greiner, Jacob Kriiger, Lukas Linsbauer, Sten Gruener,
Timo Kehrer, Thomas Kuehn, Christoph Seidl, and Ralf Reussner. 2022. Unified
Operations for Variability in Space and Time. In International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM. https:
//doi.org/10.1145/3510466.3510483

Sofia Ananieva, Sandra Greiner, Thomas Kiihn, Jacob Kriiger, Lukas Linsbauer,
Sten Griiner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lonn, Sebastian
Krieter, Christoph Seidl, S. Ramesh, Ralf Reussner, and Bernhard Westfechtel. 2020.
A Conceptual Model for Unifying Variability in Space and Time. In International
Systems and Software Product Line Conference (SPLC). ACM. https://doi.org/10.
1145/3382025.3414955

Vaibhav Anu, Wenhua Hu, Jeffrey C. Carver, Gursimran S. Walia, and Gary
Bradshaw. 2018. Development of a Human Error Taxonomy for Software Re-
quirements: A Systematic Literature Review. Information and Software Technology
103 (2018). https://doi.org/10.1016/j.infsof.2018.06.011

Wesley K.G. Assungéo, Jacob Kriiger, Sébastien Mosser, and Sofiane Selaoui. 2023.
How Do Microservices Evolve? An Empirical Analysis of Changes in Open-
Source Microservice Repositories. Journal of Systems and Software 204 (2023).
https://doi.org/10.1016/].jss.2023.111788

Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys 30, 2 (1998). https://doi.
org/10.1145/280277.280280

Andrea Di Sorbo, Sebastiano Panichella, Corrado A. Visaggio, Massimiliano
Di Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development Emails
Content Analyzer: Intention Mining in Developer Discussions. In International
Conference on Automated Software Engineering (ASE). IEEE. https://doi.org/10.
1109/ASE.2015.12

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling Fine-Grained Code Changes. In International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE. https:
//doi.org/10.1109/saner.2015.7081844

Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2018.
Communicative Intention in Code Review Questions. In International Conference
on Software Maintenance and Evolution (ICSME). IEEE. https://doi.org/10.1109/
ICSME.2018.00061

Shinpei Hayashi, Takayuki Omori, Teruyoshi Zenmyo, Katsuhisa Maruyama, and
Motoshi Saeki. 2012. Refactoring Edit History of Source Code. In International
Conference on Software Maintenance (ICSM). IEEE. https://doi.org/10.1109/icsm.
2012.6405336

Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The Impact of Tangled Code
Changes on Defect Prediction Models. Empirical Software Engineering 21, 2 (2016).
https://doi.org/10.1007/s10664-015-9376-6

Sebastian Honel, Morgan Ericsson, Welf Léwe, and Anna Wingkvist. 2020. Using
Source Code Density to Improve the Accuracy of Automatic Commit Classifi-
cation Into Maintenance Activities. Journal of Systems and Software 168 (2020).
https://doi.org/10.1016/].jss.2020.110673

Qiao Huang, Xin Xia, David Lo, and Gail C. Murphy. 2018. Automating Intention
Mining. IEEE Transactions on Software Engineering 46, 10 (2018). https://doi.org/
10.1109/TSE.2018.2876340

Irum Inayat, Siti S. Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. 2015. A Systematic Literature Review on Agile Requirements
Engineering Practices and Challenges. Computers in Human Behavior 51 (2015).
https://doi.org/10.1016/j.chb.2014.10.046

[14

[15

[16]

[18

[19

[20

[21

[22

~
&

[24

[25

[26]

[27]

[28

[29]

[30

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures. Annals of Software Engineering 5 (1998). https://doi.
org/10.1023/a:1018980625587

Jacob Kruger and Regina Hebig. 2020. What Developers (Care to) Recall: An
Interview Survey on Smaller Systems. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE. https://doi.org/10.1109/ICSME46990.
2020.00015

Jacob Kriiger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is My Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019).
https://doi.org/10.1016/].jss.2019.01.057

Stanislav Levin and Amiram Yehudai. 2019. Visually Exploring Software Mainte-
nance Activities. In International Working Conference on Software Visualization
(VISSOFT). IEEE. https://doi.org/10.1109/VISSOFT.2019.00021

Yuejian Li and Nancy J. Wahl. 1999. An Overview of Regression Testing. ACM
SIGSOFT Software Engineering Notes 24, 1 (1999). https://doi.org/10.1145/308769.
308790

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2018. Semantic Slicing

of Software Version Histories. IEEE Transactions on Software Engineering 44, 2
(2018). https://doi.org/10.1109/tse.2017.2664824

Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. 1978. Characteristics
of Application Software Maintenance. Communications of the ACM 21, 6 (1978).
https://doi.org/10.1145/359511.359522

Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger, and Andrzej
Wasowski. 2019. Intention-Based Integration of Software Variants. In Interna-
tional Conference on Software Engineering (ICSE). IEEE. https://doi.org/10.1109/
icse.2019.00090

Katsuhisa Maruyama, Eijiro Kitsu, Takayuki Omori, and Shinpei Hayashi. 2012.
Slicing and Replaying Code Change History. In International Conference on Auto-
mated Software Engineering (ASE). ACM. https://doi.org/10.1145/2351676.2351713
Damir Nesi¢, Jacob Kriiger, Stefan Stanciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM.
https://doi.org/10.1145/3338906.3338974

Sarocha Sothornprapakorn, Shinpei Hayashi, and Motoshi Saeki. 2018. Visualiz-
ing a Tangled Change for Supporting Its Decomposition and Commit Construc-
tion. In Annual Computer Software and Applications Conference (COMPSAC). IEEE.
https://doi.org/10.1109/compsac.2018.00018

E. Burton Swanson. 1976. The Dimensions of Maintenance. In International
Conference on Software Engineering (ICSE). IEEE.

Song Wang, Chetan Bansal, and Nachiappan Nagappan. 2020. Large-Scale Intent
Analysis for Identifying Large-Review-Effort Code Changes. Information and
Software Technology (2020). https://doi.org/10.1016/j.infsof.2020.106408

Peter Weif3gerber and Stephan Diehl. 2006. Identifying Refactorings from Source-
Code Changes. In International Conference on Automated Software Engineering
(ASE). IEEE. https://doi.org/10.1109/ASE.2006.41

Jooyong Yi, Dawei Qi, Shin H. Tan, and Abhik Roychoudhury. 2015. Software
Change Contracts. ACM Transactions on Software Engineering and Methodology
24,3 (2015). https://doi.org/10.1145/2729973

Shurui Zhou, Stefan Stanciulescu, Olaf Leflenich, Yingfei Xiong, Andrzej Wa-
sowski, and Christian Késtner. 2018. Identifying Features in Forks. In International
Conference on Software Engineering (ICSE). ACM. https://doi.org/10.1145/3180155.
3180205


https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1016/j.infsof.2018.06.011
https://doi.org/10.1016/j.jss.2023.111788
https://doi.org/10.1145/280277.280280
https://doi.org/10.1145/280277.280280
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/saner.2015.7081844
https://doi.org/10.1109/saner.2015.7081844
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1109/icsm.2012.6405336
https://doi.org/10.1109/icsm.2012.6405336
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1016/j.jss.2020.110673
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1016/j.chb.2014.10.046
https://doi.org/10.1023/a:1018980625587
https://doi.org/10.1023/a:1018980625587
https://doi.org/10.1109/ICSME46990.2020.00015
https://doi.org/10.1109/ICSME46990.2020.00015
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1109/VISSOFT.2019.00021
https://doi.org/10.1145/308769.308790
https://doi.org/10.1145/308769.308790
https://doi.org/10.1109/tse.2017.2664824
https://doi.org/10.1145/359511.359522
https://doi.org/10.1109/icse.2019.00090
https://doi.org/10.1109/icse.2019.00090
https://doi.org/10.1145/2351676.2351713
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1109/compsac.2018.00018
https://doi.org/10.1016/j.infsof.2020.106408
https://doi.org/10.1109/ASE.2006.41
https://doi.org/10.1145/2729973
https://doi.org/10.1145/3180155.3180205
https://doi.org/10.1145/3180155.3180205

	Abstract
	1 Introduction
	2 Why Manage Intentions
	3 A Vision of Managing Intentions
	4 Steps for Future Work
	5 Conclusion
	References

